CRITICAL ANALYSIS OF SEMICONDUCTOR SUPPLY CHAIN MANAGEMENT IN THE U.S. POST PANDEMIC

MBA International Trade

International Strategic Management

Prof. Dr. Cornelia Scott

Gaurav Bhatia 5027013

Contents

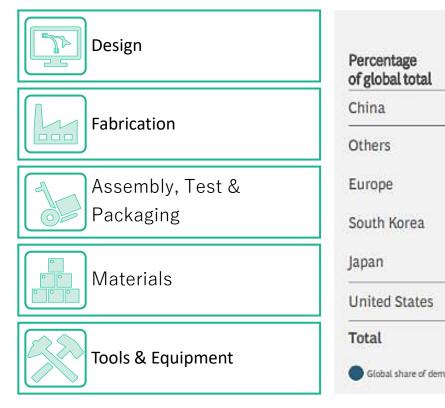
E

- Introduction
- Semiconductor Supply Chain
- U.S. Positioning in Semiconductor Supply Chain
- Impact of Covid-19
- Demand Drivers & Semiconductor Revenue
- BullWhip Effect: Semiconductor Supply Chain
- Survey Results
- Building Resilient Supply Chain
- Risk Management
- Key Considerations for Major Players
- U.S. Semiconductor Innovation Policy Landscape
- Conclusion

Introduction

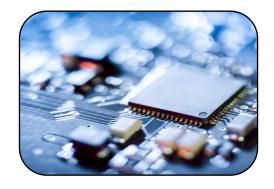
- Semiconductors are the foundation of modern life and plays a vital role in enabling the world's technological shift.
- Since the stay-at-home legislatives, there has been an unanticipated rise in semiconductor demand,
- The U.S. holds flagship in technology sector but is currently facing turmoil due to the disruptions in the supply chain.

Semiconductor Supply Chain



The transportation costs of the semiconductors are very less as compared to the value provided by them.

U.S. Positioning in Semiconductor Supply Chain



Percentage		Semiconductor supply							
		Core IP and tools		Design		Manufacturing		Manufacturing inputs	
of global total	Demand	EDA	Core IP	Fabless	IDM	Foundry	OSAT	Equipment ¹	Materials
China	23%	0		•	1.5		@		
Others	0	0		29%		78%	5Q%		40%
Europe	0	See Note 2	0					00	0
South Korea	•	0	See Note 3	٠	30%	0	٠		•
Japan	0		41%	٠	0		0	27%	
United States	34%	60%	52%	52%	47%	0	0	52%	0
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%

- The U.S. is world leader in semiconductor design and equipment, but relies on foreign countries for certain materials, manufacturing, assembling, and testing.
- The semiconductor manufacturing has dropped from 37% of the global total in 1990 to 12% in 2021.

Impact of COVID-19

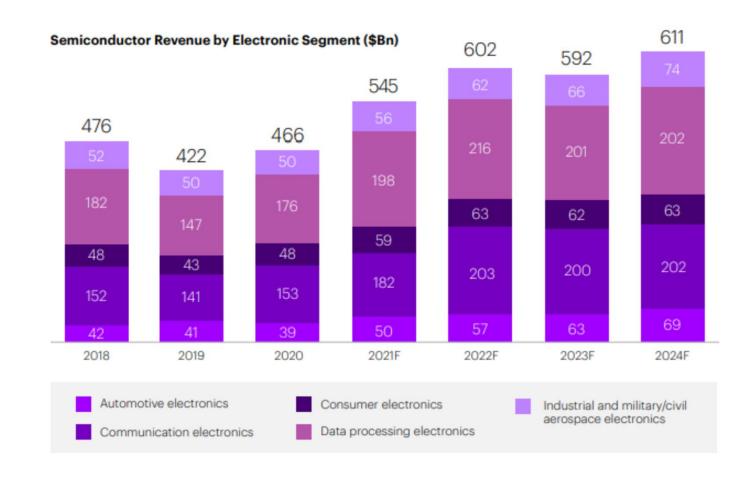
Shortage of Chips due to the imbalance

PC & consumer electronics: nearly \$442 billion in retail sales revenue

Inflation of goods: Automobiles

U.S. National Security at Risk

Semiconductor Demand Drivers

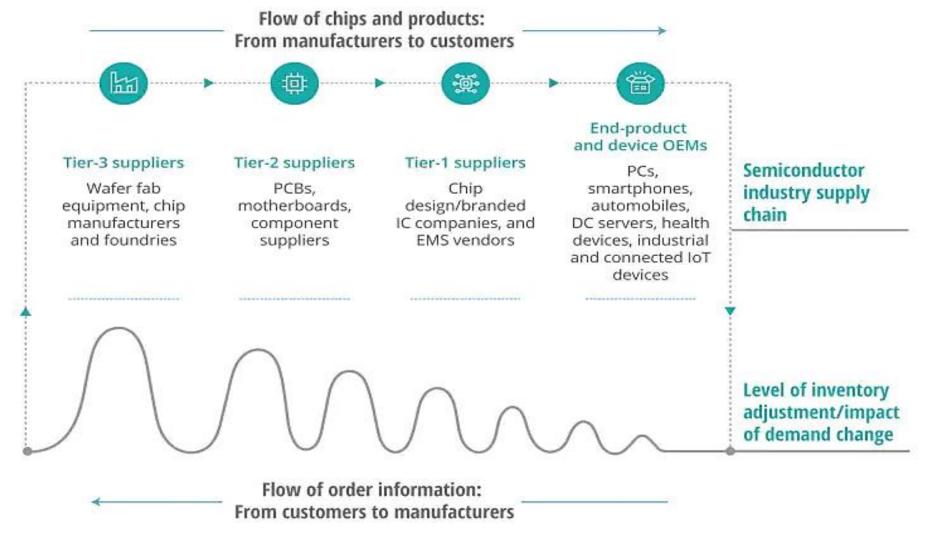


End Use Category	Computer	Communication	Consumer ((ပုာ))	Industrial	Automotive	Government
Annual Growth	21.2	1.2	-3.0	8.2	-0.3	-11.8
Total Value (\$B)	142.2	137.6	53.0	52.9	50.1	4.6

- End-use demand 2020.
- The end-use sale of semiconductors experienced significant unexpected shifts across all the categories throughout 2020.
- In the first half of 2021, strong growth has been observed in end market sales across all the categories.

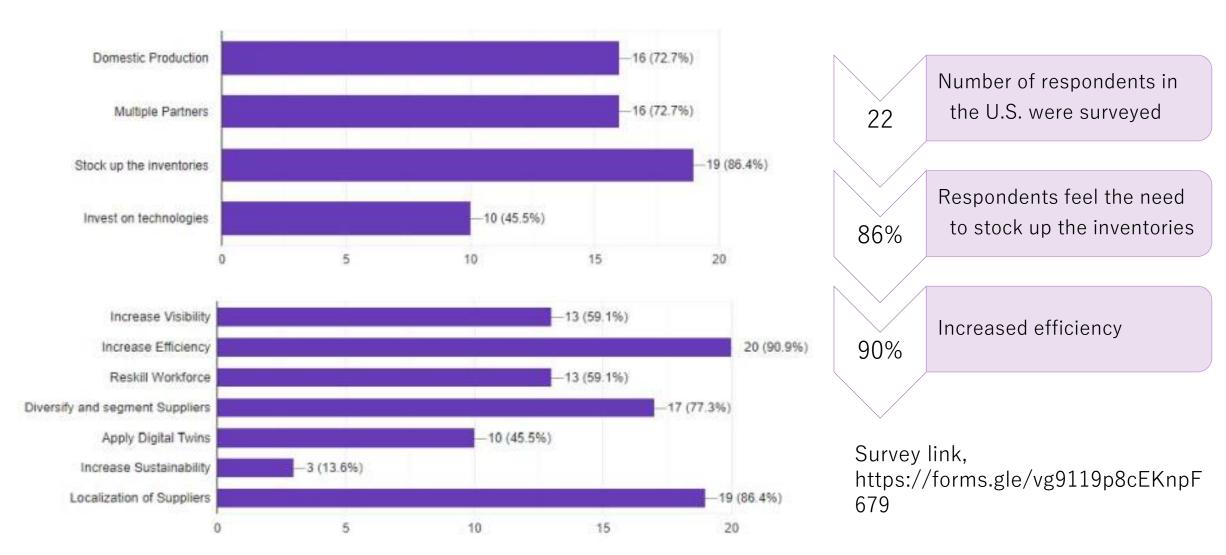

Semiconductor Revenue

BullWhip Effect: Semiconductor Supply Chain



- Global Production Network
- Unstable demand & supply

BullWhip Effect: Semiconductor Supply Chain



Source: Dan Hamling Chris Richard Duncan Stewart Karthik Ramachandran, Five fixes for the semiconductor chip shortage, Deloitte Insights, 6 Dec 2021, accessed on 13.01.2022 at 15:24, source: https://www2.deloitte.com/xe/en/insights/industry/technology/semiconductor-supply-chain-solutions.html accessed on 13/01/2022 at 14:15.

Survey Results

Bain & Co. has put forward some strategies to cope up with ongoing Semiconductor shortage:

Adaptability, Redundancy & Real-time feedback.

In Adaptability, focus is to make product flexible in terms of components.

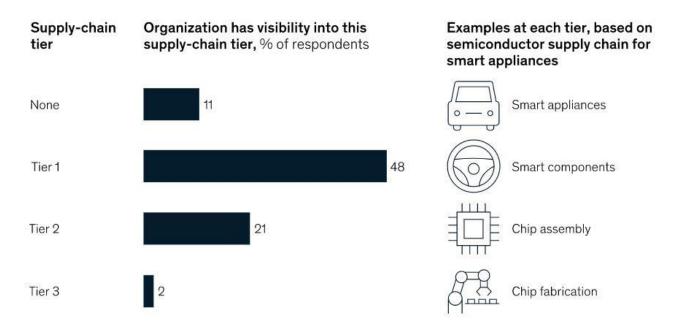
Redundancy, where company need to maintain inventory and purchase from multiple vendors.

Real-time feedback helps to monitor possible failure points in a supply chain via heat maps.

Digital Twin, Digital twins will help assess risks associated with Operations & Finances with respect to disruptions in the market.

Time 's up for just-in-time

Building Resilient Supply Chain


Digital Supply Chain, can help us redesign the traditional supply chains into an integrated & connected supply chain by focusing on all tiers of suppliers.

Risk Management

• Mckinsy states that actions taken for risk management of supply chain for any company is directly proportional to the maturity of their supply-chain risk-management capabilities.

Only 2 percent of companies have visibility into their supply base beyond the second tier.

Key Considerations for Major Players

Action	Chipmakers	Distributors	Customers	Governments
Build overall capacity	1			√
Build local capacity	✓			✓
Become strategically lean		✓	1	
Break the bullwhip	~	~	*	1
Digital transformation	1	1	/	

All the steps are not needed to be completed by all the players involved.

U.S. Semiconductor Innovation Policy Landscape

Invest in U.S.
Semiconductor
Leadership

Strengthen America's Technology Workforce

Promote Free Trade and Protect IP

Cooperate Closely with Like-Minded Economies

Conclusion

- The pandemic has disrupted the semiconductor supply chain globally.
- The chip shortage has highlighted how susceptible the supply chain is, and it has forced the companies in this sector to reconsider and transform its global supply chain model.
- To break the Bullwhip effect, all the players involved in the sector need to coordinate and work in close cooperation to come out of this semiconductor's shortage circle.
- The U.S. government has produced number of innovation policies to remain leaders in the Semiconductor sector.